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Abstract

We present variants of both the digital curvelet transform, and the digital wave atom trans-
form, which handle the image boundaries by mirror extension. Previous versions of these trans-
forms treated image boundaries by periodization. The main ideas of the modifications are 1)
to tile the discrete cosine domain instead of the discrete Fourier domain, and 2) to adequately
reorganize the in-tile data. In their shift-invariant versions, the new constructions come with
no penalty on the redundancy or computational complexity. For shift-variant wave atoms, the
penalty is a factor 2 instead of the naive factor 4.

These various modifications have been included in the Curvelab and WaveAtom toolboxes,
and extend the range of applicability of curvelets (good for edges and bandlimited wavefronts)
and wave atoms (good for oscillatory patterns and textures) to situations where periodization
at the boundaries is uncalled for. The new variants are dubbed ME-curvelets and ME-wave
atoms, where ME stands for mirror-extended.

1 Introduction

Curvelets [4, 5, 3] and wave atoms [9, 29] are two multiscale geometric transforms that have revealed
themselves quite useful over the past few years, in such diverse fields as image processing [12, 13,
22, 27|, seismic imaging [17, 18, 19], numerical analysis [8, 10], and analysis of partial differential
equations [1, 2]. Many useful alternative architectures have also been investigated in the literature,
and go by the names of contourlets [11], bandlets [25], shearlets [16], brushlets [24], dual-tree
wavelets and wavelet packets [6, 14, 21, 30], multiselective wavelets [20], etc.

The definition of discrete curvelets and wave atoms, as in the toolboxes Curvelab [3] and
WaveAtom [9], makes a central use of the discrete Fourier transform. This choice has one side
effect: the FFT implicitly treats the image on [0, 1]? as periodic across its boundaries. As a result,
the basis functions that are localized near the image edges wrap around to the opposite edge by
periodicity. This behavior may pose a problem for image processing applications where the contrast
difference at opposite edges is unphysical and should play no role in the sparsity of a transform
expansion.

One typical remedy is to work on the mirror-extended image, defined on the square [—1,1]? as

i(z1, 22) = u(|z1], [22]). (1)

Applying the curvelet or wave atom algorithm naively to the extended image will result in (at least)
a fourfold increase in computational complexity and redundancy. The overhead is easily identified:
it is due to redundant translation steps in the mirrored portions of the image.



The main contribution of this paper is that there is, in most cases, a clean way of avoiding this
unwanted redundancy by working directly in the discrete cosine domain of the original image.

This paper is organized as follows. In Section 2, we rehearse the construction of curvelets and
wave atoms following [3, 9]. In Section 3, we introduce curvelets with mirror extension at the
image boundaries. In Section 4, we generalize the results to wave atoms. We conclude by showing
numerical experiments involving the new transforms. Our convention for the continuous Fourier
transform in R? is

f(w) = / () dx,  [(%) :@iw / ¢ () duw.

2 Basic transform architectures

2.1 Curvelets

This section is a summary of the exposition of discrete curvelets in [3]. In this paper, we focus on
the “wrapping” version of the curvelet transform and we let x € R2.

In continuous frequency w, and with a continuous translation parameter b, the definition of
curvelet coefficients of data f(x) is

cj,g,b:/f(w)ijgl(w)eib""dw, (2)

where Uj g, is a real-valued wedge window dilated to scale j and parabolically localized to angles
near 6; by a shearing operation. To give an idea, when j > 3 and |ws| < .8 - w1, say, we can write

U, (w) = W (2 w)V (2W2JWQ Jwr — e) . tanf =¢.27b2) (3)

where V and W are fixed—see [3] for details. The collection of Ujg, gives rise to the well-known
SDD tiling of the frequency plane as in Figure 1.

An application of Plancherel’s formula shows that c;,, is exactly the expected inner product
of f(x) with curvelets at different scales, angles and positions:

cien = [ F00% o~ b) x, @

where ; ¢(x) is the inverse Fourier transform of Ujg,(w).
To obtain curvelets with discrete parameters, b appearing in equation (2) should be sampled
so that the resulting collection of curvelets is still a tight frame:

Fx) =) (fpj00)90x(x),  (conv. in L?).

j7£7k

One possible choice when —7/4 < 6, < w/4, corresponding to the “wrapping” variant of the
transform, is

by = (51k1 -277, 8ok - 27W2J> ; (5)

with adequate constants d1,ds. Observe how the parabolic scaling enters the construction of the
window Uj g, in (3), and by duality the sampling of b in (5). In what follows, we may abbreviate
ILL = (..77 g? k) M

To obtain a fully discrete curvelet transform, the frequency variable w should be discretized
by equispaced samples and limited to a square [~7N, 7 N]? corresponding to the bandlimit of the



data. As a result, the FFT can be invoked to compute Fourier transforms. In turn, (2) can be
seen as a small inverse FFT, after an operation of reassignment by periodization called “wrapping”
has been applied to the windowed data f (w)Ujg,(w). The algorithm for the fast discrete curvelet
transform (FDCT) can then be summarized as follows:

1. Apply the 2D FFT and obtain Fourier samples f [w1,w2], where wy,ws € 27Z and obey
—7mN < wi,wy <7N.

2. For each scale j and angle ¢, form the product U; g, (w1, wa flwr, wa).

3. Wrap this product around the origin and obtain
filwr,wa) = W(Uj e f)wr, wal.
4. Apply the inverse 2D FFT to each ]Ej’g, hence collecting the discrete coefficients ¢ (j, ¢, k).

This algorithm for the FDCT has computational complexity O(N?1log N) and in practice, its com-
putational cost does not exceed that of 6 to 10 two-dimensional FFTs. Because the FDCT preserves
the £ norm, it is invertible by the adjoint transform in essentially the same complexity.

Let us finish this short review by listing a few properties of the FDCT that are sometimes
overlooked.

e Curvelets are complex-valued, but a real-valued construction exists as well [3].

e The transform has reasonable redundancy, about 7.5 if curvelets are used at the finest scale,
or 2.5 otherwise.

e Curvelets are by construction shift-invariant, in the sense that subspaces corresponding to
fixed j,¢ are invariant under integer-pixel translations of the image f(x). Individually, coef-
ficients are of course not shift-invariant, and not even nearly so.

e Discrete curvelets are as faithful to the continuous transform (2) as the joint sampling and
bandlimiting of the data allows (Proposition 6.1 in [3]).

2.2 Wave Atoms

The unabridged reference for this section is [9]. We apologize to the reader for overloading such
common symbols as j, k in the current and previous sections.

Individually, wave atoms are tensor products of a special type of 1D wave packets due to Lars
Villemoes [29]. In continuous frequency, we start by defining

Ym(w) = e [0 glem(w — m(m +1/2))) + " g(emir(w + m(m +1/2)))] (6)

with a, = Z(m + 3) and €, = (—=1)™. The function g is a particular real-valued, compactly-
supported C°° bump function chosen such that

> @) =1,

and such that the translates {t,,(t — k)} form an orthonormal basis of L?(R). This construction
provides a uniform, or Gabor, tiling of the frequency axis.



o, A

\/
1

L =

Figure 1: Left: Curvelet tiling, also called second dyadic decomposition (SDD) of the frequency
plane. Right: wave atom tiling of the frequency plane — only the first quadrant is shown.

The novelty in Villemoes’s construction is that dilations of the template 10, can generate non-
Gabor, wavelet-packet-like orthobases with very good frequency localization [29]. Let us introduce
a subscript j to index scale, and define

(@) = (@ — 27m) = 29/20, (293 — ).
The coefficients associated to wfnn(:c) will naturally be denoted as ¢;j, n. Note that the couple
(j,m) refers to a point on the wavelet packet tree; the depth at that point is J — j, where J is the
maximum depth, and m can be interpreted as the number of nodes on the left at the same depth
(nodes are not necessarily leaves). This convention is the standard indexing scheme for wavelet
packets.

Within the limits of the Fourier uncertainty principle, a given atom Wﬁ,n(fﬂ) is centered in the
(z,w) space at

Tjn = Q*jn, Wjm = 72m.

The “wave atom” architecture is obtained when we let the subscript m be comparable to 27 in
absolute value. This choice implies a parabolic scaling law: the window width in frequency (2727)
is asymptotically, up to a constant, the square root of the distance to the origin (~ 2%/). In a dual
fashion, the essential width of the support in z (~ 277) is about the square root of the wavelength
inside the envelope (~ 27%).

A second orthonormal basis is obtained by Hilbert-transforming the basis elements to define

Hip,(w) = e 2 [(=i)e*m g(em(w — m(m +1/2))) + i~ " g(emr(w + m(m +1/2))] . (7)

and adequate dilations thereof for other values of j. The coefficients in the Hilbert-transformed
basis will be denoted by CJHmn
There are essentially three ways to combine 1D wave atoms in order to define 2D wave atoms:

1. An orthonormal basis. Orthonormal basis functions with 4 bumps in the frequency plane
can be formed by individually taking tensor products of 1D wave atoms in a “nonstandard”



fashion — where nonstandard refers to the fact that there is only one dilation parameter j.
So we let 1 = (j,m, k), where m = (mq, mg) and n = (n1,n2), and write

o (21, m9) = P, (21 — 277 m1) P, (w2 — 277 my).
The Fourier transform is also separable, namely

@:(wl,wz) = Aal (wl)e—i2jn1w1 1])%12 (w2) e—inmuu.

A dual orthonormal basis can be defined from the Hilbert-transformed wavelet packets,
¢, (T1,72) = H7/17]ﬁ1($1 —27m) H@ZJ#2 (22 — 27ny).

2. A tight frame with redundancy 2. The main drawback of the above definition is that basis func-
tions in the x space oscillate in two directions instead of one. This lack of directionality can be
remedied in a well-known way [26] by combining the primal and dual (Hilbert-transformed)
basis. More precisely, the recombination

+ — + —
ou ty Pu — ¥
80,(}) = %, SDl(f) — %7 (8)

provides basis functions with two bumps in the frequency plane, symmetric with respect to
(2)

the origin, hence purely directional wave atoms. Together, gpl(}) and ¢~ form the wave atom
frame and may be denoted jointly as ¢,,.

3. A tight frame with redundancy four. For data compression or numerical analysis, the orthoba-
sis or tight frame with redundancy two should prove satisfactory. However for statistical esti-
mation, where translation invariance matters, a different design is desirable. Shift-invariance
of the subspaces for fixed 7 and m can be obtained by isolating bumps in the frequency plane
by means of quadrant indicators, thereby constructing complex-valued basis functions. As a
result, the phase factors in (6) are not necessary anymore, and the redundancy is quadrupled
from the orthobasis construction. Details can be found in [9].

The frequency tiling of 2D wave atoms is in Figure 1 on the right. In contrast to curvelets,
about O(2 /2) wave atom windows would be needed to cover a SDD wedge at scale j.

The discretization of wave atoms closely follows the strategy of frequency sampling and wrapping
used for curvelets. For 1D wave atoms, we define

Pron= 3 € (W) f(w). ()

wEe2TZL

Modulo aliasing questions that only complicate the design of basis functions at the smallest scale,
we can let w = 2m(—N/241:1: N/2) in the sum above. The wrapping operation is a periodization
of the frequency samples that allows to write

Gmn= DL TR (ot 2p)id +2).
w=2m(—27 /24+1:1:27 /2) pE2TZ

The corresponding expressions in 2D are simple tensor products. The flowchart of the wave
atom transform is very similar to that of curvelets and yields an O(N log N) algorithm in 1D
— O(N?log N) in 2D. All three variants of the wave atom transform are isometries and therefore
invertible in essentially the same complexity by the adjoint. All variants are implemented in the
WaveAtom software package.



3 Mirror-Extended Curvelets

For the time being, let the data be a real function u(x) of continuous x = (z1,x2). (If the data are
complex-valued, consider the real part and imaginary part separately.) As previously, we define
its mirror extension @ by equation (1) posed in [~1,1]2. The basic guideline we will follow for
the construction of mirror-extended (ME) curvelets is to work on the extension @, and cut down
redundant computations where possible. Let us detail the two most important points.

3.1 Cosine Instead of Fourier

The first step of the ME curvelet transform is to compute a cosine transform of u in place of the
Fourier transform of 4. In order to see why this is important, stick to continuous variables x1, o
in the square [—1,1]? and consider the Fourier series of :

i(w) = / e~ w24 (x) dx, w = (w1, ws) € 27Z X 27L.
[_171]2

It is immediate to check that @ is the cosine series! of the original function u, up to a factor 4:

ﬁ(wl,wg) = 4/ cos(z1wy /2) cos(mraws/2)u(xy, x2) dr1dxs.
[0,1]2

In particular, the coefficients are real-valued, and have the same even-even symmetry as u:
w(wr,ws2) = (|wil, [wa).

Due to this redundancy, the computation of ﬁ(wl,wg) should be limited to the first quadrant
w1, ws > 0, and this is precisely what the cosine series does.

In practice, x; and zy are discretized over n equispaced points, as (1j,,%25,) = (Jj1,52)/n,
J1,92 = 0,...,n — 1. If we simply copy the image by two successive 1D mirror extensions like
[abed] — [abeddcba) along 1 and w2, then the Fourier transform of the mirrored image is unfor-
tunately neither real nor even about the origin. To avoid this problem, another option would be
to mirror the image according to [abcd] — [abedceb], and identify the Fourier transform with the
output of the type-I DCT transform. There are however issues? with the implementation of DCT-
I. Instead, to best exploit existing fast routines®, we discretize the cosine series by means of the
type-1I discrete cosine transform (DCT-II, or simply called the DCT). The definition of the DCT-II
in 1D, with vector indexing starting at zero, is

N-1
. T (. 1 .
u[k]—w(k)jzocos[N<j+2>k] ulj], k=0,...,N -1,
with weights w(k) = \/2/N if k # 0, and w(0) = 1/v/N. (Think of k as w/(27)). The weight
factors make the DCT unitary, hence the inverse DCT is simply the transpose. In 2D, the DCT is
the succession of two DCT along each dimension.

!We could also call it the cosine transform on an interval (1D) or on a square (2D); it is the most obvious way of
building an orthobasis of L? with cosine functions.

2The DCT-I is absent from Matlab’s standard toolboxes, and is curiously difficult to implement efficiently. For
instance, the DCT-I is present in the FFTW package [15], but the documentation warns us that it is often best
computed via FFT, by going back to the mirror-extended vector. This would defeat our purpose.

3The DCT-II is present in the JPEG image compression standard and many good routines are available for it [15].



There exists a correspondence between DCT and FFT, but it is not as simple as in the continuous
case. In short, if [abcd] represents a vector of real numbers and [ABC D] represent twice its DCT
(computed without the weights w(k)), then

v = [0a0b0c0d0d0c0b0a] = FFT(v) = [ABCDO(—D)(—C)(—B)(—A)(—B)(—C)(—D)0DCB].

The first element (A) is the zero in frequency. The portion of the FFT with sign flips is not
interesting and corresponds to the high-frequency signature of the insertion of zeros in v. We will
therefore discard this portion and deploy the wedge partitioning on the truncated Fourier domain,
i.e., with sequences like [ABCDODCB] in 1D. Let us remark that this sequence is not exactly the
Fourier transform of the mirrored data [abcddcba] (as we remarked earlier, the latter would not be
real-valued), but the substitute is a very good one.

In two dimensions, the truncation means that the frequency plane is now tiled with four mirror-
flipped copies of the DCT data, instead of 16 when the sign-flipped regions were kept.

At this stage, let us recall that the algorithm has only computed the DCT of the input, in
complexity O(N?log N).

3.2 Assignment to Symmetric Wedges

The second step of the ME curvelet transform is to window and wrap the data around the origin as
before, from data in the frequency plane obtained by mirror extension of the DCT. We are naively
brought back to the complexity of the curvelet transform on the mirror-extended images, with a
factor-4 redundancy. The symmetries of the data f in the frequency plane, however, as well as the
symmetries of the transform architecture, can be leveraged to identify these redundancies. For the
data, by construction, we have
flwr,wa) = f(—wi,ws) = f(wr, —wz) = f(—wr1, —wn).
As for the wedge windows W) g,(w1,w2) of the curvelet partitioning with 0 < 6, < 7/2, we have
Wi, (w1,wa) = Wjrg,(—w1,w2) = Wjr1g,(—w1, —wa) = Wj _g, (w1, —wa).

(All angles are defined modulo 27, of course.) At the level of the coefficients, denote by ¢_. the
subscript corresponding to w— 6y, __ the subscript corresponding to w4 6y, and £, _ the subscript
corresponding to —f,. Then, it is easy to see from equation (2) that

Cjlbi,ba = Cjl_i (=b1)be = Cjl__ (=b1,—b2) = Cjly_b1,(—b2)"

The same symmetry relations hold for the “corner windows”, as defined in [3]. As a result of this
symmetry, we only need to consider angles 0 < 6y < 7/2, and obtain all the other ones through the
relations above.

Let us explain quite concretely the impact of this symmetry on the architecture of the curvelet
transform. As mentioned, the loop on angles will only cover [0, 7/2]. Fix j and y. After wrapping
the windowed data near the origin, and taking an inverse FFT, we obtain an array of numbers
indexed by the position index (k1, k2), related to (b1, b2) through equation (5). The only difference
with the periodic case is now that k1 and ko also run over negative numbers, corresponding to
coefficients in the mirror-extended portions of the image. Hence, the array of coefficients needs to
be split in 4, and assigned to the different angles corresponding to the correspondences ¢ — 6y,
f__i_ — T — gg, l__ —m+ 94, é_,__ - —Gg.

These are the only modification that make the ME curvelet transform different from the stan-
dard curvelet transform. Since the redundancies due to the mirroring have all been removed by
construction, the complexity is essentially the same as that of regular curvelets.



4 Mirror-extended wave atoms

Wave atoms are also implemented in the frequency domain, and the basic idea of reducing compu-
tations by going to the DCT domain carries over. In particular, for the tight frame of wave atoms
with redundancy four, the discussion of the previous section applies word for word and needs not
be changed. This defines a redundancy-4 tight frame of complez-valued ME wave atoms.

There is a twist, however, for the less redundant versions of wave atoms (orthobasis and tight
frame with redundancy 2). Since wave atoms are not real-valued in the frequency domain, the
symmetry relations are not the same as in the case of curvelets. This difficulty is related to the fact
that wave atoms are built from a critically decimated 1D orthobasis. The “delicate” phase factors
of the Fourier transform of the 1D basis functions in equation (6) are essential for invertibility and
tightness, as in any wavelet-like orthonormal basis.*

As before, the first step of the ME wave atom transform is to compute the DCT of the image.

The more complicated symmetry property of wave atoms is that coefficients centered at positions
in the mirror-extended portion of the image are in fact coefficients in the dual, Hilbert-transformed
basis. Let us explain this claim with a lemma for the 1D transform.

Lemma 1. Let @%(w) be a 1D wave atom basis function in frequency. Then

h(w) = ime Y Hi (w), (10)
where Hﬁ%(w) 18 the corresponding basis element in the Hilbert-transformed basis.
Proof. By definition, 1, (w) = 279/ 240 (279w), so the case j # 0 in equation (10) follows directly

from the case j = 0. Let us therefore fix 7 = 0, and consider the complex conjugate of the left-hand
side, which by equation (6) equals

@(w) = /2 [e*mmg(em(w —7m(m+1/2))) + e glemy1(w + 7(m + 1/2)))] . (11)

This expression can be related to H ﬁn if and only if there exist scalars [3,, such that

e—iam eiOém
() = (70 (12)

We can check from inspection of the (generic) cases m = 0,1,2,3 that this property holds if we

choose 3, = (—i)™. This is no coincidence; it is a direct consequence of the fact that e~**» and

e’ are in quadrature (their arguments differ by 7/2) and remain so after a rotation in the complex

plane. (Note that this “quadrature” condition is an essential ingredient for building an orthobasis.
It is also present in filter design in traditional wavelet analysis).

Obtaining equation (10) is now a matter of using (12) in (11), and comparing it with with (7).

O

The corresponding symmetry relation for 1D wave atom coefficients is the following.

Proposition 1. Let cP denote the discrete wave atom coefficients, and ¢cPH the discrete wave atom
coefficients in the Hilbert-transformed basis. Assume the frequency data f(w) is real and even. Then

D _ m DH
Cj:mz(_n) =t cj,m,(n—l)

4The construction of curvelets, for instance, does not have such phase factors. This comes with a drawback,
namely a small increase in redundancy for curvelets, but also with an advantage: the lack of aliasing implies the
shift-invariance property that we have alluded to earlier.



Proof. From the pre-wrapping formulation (9), we have

=3 €20 () f(w).

wEe2TL

The wave atoms are not even in x, but they are real-valued hence obey TZJ%L(—UJ) = J)ﬁn(w) Using
this information, and after renaming w to —w, we obtain for the coefficient at j, m, (—n),

Py = D €2 (@) f(w).

wE2TZ

The only difference with the expression of c] m.n 18 the complex conjugate over the basis function,

which prevents a direct identification. If we invoke Lemma 1, however, we can write

Py =Y €T I () f(w),

wEe2TZL

which is none other than i"cPH

mm—1, 0 the Hilbert-transformed basis.

O

The next step of the ME wave atom algorithm in 2D, after taking the DCT, is exactly the same
as for the periodic wave atoms: wrapping the four bumps of the windowed data near the origin,
and inverse FFT of the wrapped array. For each j and m, these operations output an array of
numbers d; m n, n, that contains four times as many entries as in the non-ME case — because n;
and no can take on negative values.

If we isolate the first quadrant (n; > 0, ne > 0), and put

(-++) =d; ny, Ny Z 0

7,m,n1,n2 J,m,n1,n2 5 ’ ’
then the resulting coefficients correspond to wave packets in the non-mirrored portion of the im-
age. We do not seek to isolate them to form a new transform: the basis functions would not be
orthonormal. Instead, we accept the fourfold increase in redundancy and deal with the full arrays
djmny,no- In this respect, the only computational relief compared to running the full wave atom
orthobasis on the extended image is at the level of the initial FFT — now a DCT.

The redundancy-2 tight frame of fully-directional wave atoms, however, has an interesting
mirror-extended counterpart. If we were to apply the naive transform on mirror-extended images,
we would have a redundancy-8 transform. We propose to lower the redundancy to four.

By definition, the fully directional wave atom coefficients are combinations of coefficients in the
standard orthobasis, with coefficients in the double-Hillbert-transformed orthobasis. This set of
coefficients is also accessible from the array d;m n,n,; thanks to Proposition 1, they can be found
in the third quadrant:

§_m_2z1,n2 = dj,m,—nl—l,—ng—h ni,ng > 0.
Coefficients of fully directional basis functions can then be defined by combining (V) = (1) +
c=7))/2, as before. In order to design an isometric transform (tight frame), we also need to consider
the second and fourth quadrants:

o)
Cj7m7n17n2 - dj7m7n17_n2_17 ny, N2 Z 07
)  _
cjvmvnlynQ - djzm»fnlfl,n27 nl’ n2 Z 07



and combine them in an analogous manner: ¢(?) = (¢(+=)) 4 ¢(=1)) /2. The collection of coefficients
¢ and ¢ for various wave vectors j and m defines our desired tight frame of fully directional
ME wave atoms, with redundancy 4. We call them the real-valued ME-wave atoms, in contrast to
the conceptually simpler complex-valued ME-wave atoms defined at the beginning of this section.

In conclusion, the ME wave atom algorithms yield the proper generalization of wave atoms to
mirror-extended image, in complexity and redundancy

e roughly four times that of the wave atom orthobasis,
e roughly twice that of the wave atom tight frame with redundancy two, and

e roughly the same as the shift-invariant wave atom tight frame with redundancy four.

5 DST variant

Let us mention in passing that a DST variant of the curvelet and wave atom transforms can also be
defined, where DST stands for Discrete Sine Transform. It would be a properly decimated version
of either transform, defined on the mirror-extended image with parity sign changes,

u(—z1,22) = —u(x1, x2), u(z1, —x2) = —u(x1, r2), u(—z1, —x2) = u(z1, x2).

As its name indicates, the transform should be computed using the Discrete Sine Transform, in a
manner entirely analogous to what was done in the DCT case.

This DST variant may be useful in numerical analysis when treating Dirichlet boundary condi-
tions on a rectangle, i.e., when the solution of an equation is zero at the boundary. Similarly, the
DCT-based ME transforms that we defined in this paper should be useful for encoding Neumann
boundary condition on a rectange, i.e., when the normal derivative of the solution is zero at the
boundary.

6 Numerical experiments

In Figure 2 we show curvelets and wave atoms near the edge of the image: instead of being
extended by periodicity near the opposite edge, they are mirror-extended inside the image. This
new feature may positively affect the sparsity of images which have high contrast discontinuities
across periodized edges; we verify that sparsity is indeed enhanced by the ME transforms for the
simple image

f(xl,xg):xl—i—xg—l, 0< 1,20 < 1.

We discretize f by sampling on a 512-by-512 grid. In this experiment, we plot the error of the best
m-term approximant for the curvelet, ME-curvelet, wave atom and ME-wave atom transforms,
measured in PSNR (dB). In Figure 3 we can see that inversion from the largest 128 ME-curvelet
coefficients suffices to accurately recover the function (PSNR = 50.0dB), while the largest 128
regular curvelet coefficients synthesize a very poor approximant (PSNR = 9.8dB, this is not a
typo). In Figure 4 the same experiment is carried out for wave atoms: the best 128-term ME-
wave atom approximant gives PSNR = 47.7dB, while the best 128-term wave atom approximant
gives PSNR = 24.7dB. The wave atom variant used for this experiment is the tight frame with
redundancy 2.
Finally, our research is reproducible:

http://www.curvelet.org
http://www.waveatom.org

10



0.025
0.02 0.01

0.015

001 0.005

0.005

-0.005 0.005

-0.01
-0015 oot

-0.02

-0.005
-0.01

-0.01
-0.02

-0.015
-0.03

-0.02
-0.04

-0.01

-0.02

-0.03

-0.04

Figure 2: Left row: Zoom of ME curvelets at different scales, near the boundary (the top of the
image). Right row: Zoom of ME wave atoms at different scales, near the boundary. ME curvelets
or wave atoms centered in the interior of the image are very similar to their counterpart in the
standard periodic implementations. The experienced reader will notice that the spatial decay is as
good for the ME transforms as for the regular transforms.
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Figure 3: Top-left: original image. Top-right: PSNR curves of best m-term approximation for
the curvelet and ME-curvelet transforms. (Regimes where the PSNR tops 50dB are interesting
in numerical analysis, which is why we choose to plot the whole curve.) Bottom-left: partial
reconstruction using the largest 128 curvelet coefficients (PSNR = 9.8). Bottom-right: partial
reconstruction using the largest 128 ME-curvelet coefficients (PSNR = 50.0).
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Figure 4: Top-left: original image. Top-right: PSNR curves of best m-term approximation for the
wave atom and ME-wave atom transforms. Bottom-left: partial reconstruction using the largest
128 wave atom coefficients (PSNR = 24.7). Bottom-right: partial reconstruction using the largest
128 ME-wave atom coefficients (PSNR = 47.7).
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